文章编号: 0258-7025(2009)01-0166-06

对 LiNbO₃:Fe:Mn 晶体非挥发全息存储的 理论研究

申 岩1,2 孙秀冬2 赵业权3

(¹哈尔滨工业大学理学研究中心,黑龙江 哈尔滨 150080;²哈尔滨工业大学物理系,黑龙江 哈尔滨 150080) ³哈尔滨工业大学光电信息中心,黑龙江 哈尔滨 150080

摘要 以双中心模型为基础,理论研究了 LiNbO3:Fe: Mn 晶体在稳态情况下的非挥发双光双步全息存储性能。采 用数值方法,通过比较深(Mn²⁺/Mn³⁺)、浅(Fe²⁺/Fe³⁺)能级之间所有可能的电子交换过程,发现由隧穿效应引起 的深浅能级之间直接电子交换过程对总的空间电荷场的大小起着决定性的作用。同时,这一电子交换过程对晶体 非挥发全息存储性能也起着至关重要的作用。此外,还从理论上证实晶体中总的空间电荷场的大小主要由深能级 的空间电荷场所决定。

关键词 非线性光学;全息存储;数值方法;空间电荷场;隧穿效应 中图分类号 O 437;TP333。4⁺2 **文献标识码** A **doi**: 10.3788/CJL20093601.0166

Theoretical Study on Nonvolatile Holographic Recording in LiNbO₃:Fe:Mn

Shen Yan^{1,2} Sun Xiudong² Zhao Yequan³

¹The Research Center of Science, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China

² Department of Physics, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China

³Center of Photoelectricity Information, Harbin Institute of Technology, Harbin, Heilongjiang 150006, China

Abstract Based on the two-center model, the steady-state nonvolatile two-step, two-color holographic recording performance with low-intensity continuous-wave light for LiNbO3:Fe:Mn is studied theoretically. The contributions to the space charge fields from the different electron transfer processes between the deep-trap centers (Mn^{2+}/Mn^{3+}) and the shallow-trap centers (Fe^{2+}/Fe^{3+}) are compared numerically. It is found that the direct electron exchange between the Mn^{2+}/Mn^{3+} and the Fe^{2+}/Fe^{3+} levels through tunneling effect dominates the amplitude of the total space charge field. This direct electron transfer process plays a key role in the two-step, two-color holography performance also. In addition, the amplitude of the space charge field of deep-trap centers (Mn^{2+}/Mn^{3+}) dominates the amplitude of the total space charge field is proved theoretically.

Key words nonlinear optics; holographic recording; numerical method; space charge field; tunneling effect

1 引 言

由于光折变材料在实现全息数据存储方面有 着高存储密度、快速数据传输等优越的性能,近年 来,用光折变材料实现非挥发双光双步全息存储已 经被广泛研究^[1~16]。非挥发双光双步全息存储的 早期研究工作是用高强度激光脉冲研究同成分 LiNbO₃ 晶体^[7]。Bai 等^[1]用低光强连续光证明了 在非挥发双光双步全息存储中在 LiNbO₃ 晶体里有 着中间能级。Berben 等^[8] 通过研究 LiNbO₃ 小极 化子的暗衰减证实了在深能级与浅能级之间确实存 在直接电子交换过程。Jermann 等^[9]利用一种双中 心模型来解释在高光强下光强与光致折射率变化之 间的关系,在模型中提到了在深浅能级之间电子的 直接交换所引起的隧穿效应。近年来,Adibi 等^[10] 在用双中心模型来研究 LiNbO₃:Fe 晶体非挥发全 息存储性能的基础上又利用此模型来研究 LiNbO₃

收稿日期:2007-12-14; 收到修改稿日期:2008-04-30

基金项目:国家自然科学基金(60308005,60678021,10334010)、新世纪优秀人才支持计划、教育部留学回国人员启动基金(2003-406)、教育部科学技术研究重点项目(104054)、教育部科技创新工程重大项目培育资金项目(704012)、黑龙江省博士后经费、哈尔滨工业大学优秀团队支持计划和哈尔滨工业大学优秀青年教师培养计划资助课题。

作者简介:申 岩(1978-),男,黑龙江人,讲师,博士,主要从事光折变理论方面的研究。E-mail:yanshen@hit.edu.cn

:Fe:Mn 晶体全息存储性能¹¹¹,发现这种晶体能够得到更佳的全息存储性能。

本文以双中心模型为基础,从理论上研究了稳态情况下对于低光强连续光条件 LiNbO₃:Fe:Mn 晶体的非挥发双光双步全息存储性能。为了了解双 中心模型中所有电子交换过程对晶体非挥发全息存 储性能的影响,考虑了在深能级(Mn²⁺/Mn³⁺)和浅 能级(Fe²⁺/Fe³⁺)之间所有可能的电子交换过程, 包括深浅能级之间直接电子交换和电子经过导带进 行交换。结果表明,在 LiNbO₃:Fe:Mn 晶体里,由 隧穿效应引起的深浅能级之间直接电子交换过程对 总的空间电荷场的大小起到了决定性的作用。这个 电子交换过程对晶体非挥发全息存储性能也起着至 关重要的作用。

LiNbO₃: Fe: Mn 晶体的电子输运 过程

图1所示的能带图描述了用 LiNbO₃:Fe:Mn 晶 体作 全息存储时 深能级 Mn²⁺/Mn³⁺ 与浅能级 Fe²⁺/Fe³⁺之间所有可能的电子交换过程。假定这 里有两种可能的途径:一是电子要经过导带进行交 换,另一种是由隧穿效应所引起的深浅能级之间直 接进行电子交换。因此电子能够被抽运光从 Mn²⁺ 中心激发到导带或者直接到 Fe³⁺ 中心从而形成 Fe²⁺。在 Fe²⁺ 中心的电子能够被抽运光和记录光 或是由热激发激发到导带。在 Fe²⁺离子中心,那些

- 图 1 LiNbO₃:Fe:Mn 晶体中双中心模型的能级图。CB 和 VB 分别表示导带和价带。箭头表示的是在 LiNbO₃:Fe:Mn 晶体中实现双光双步全息存储时 所有可能的电子交换过程
- Fig. 1 Band diagram of the two-center model for LiNbO₃: Fe: Mn crystals. CB and VB represent the conduction band and the valence band, respectively. Note that the arrows indicate the possible electron transfer processes involved in the two-step, two-color holography in LiNbO₃: Fe: Mn

被俘获的电子也能够直接通过隧穿效应被 Mn^{3+} 俘获。导电上的电子通过扩散、漂移和光伏效应最终被 Mn^{3+} 和 Fe^{3+} 中心所俘获。需要指出的是抽运光能够激发 Mn^{2+} 和 Fe^{2+} 中心的电子,而记录光的光子没有足够的能量激发 Mn^{2+} 中心上的电子。

依据双中心带输运模型(图 1),在 LiNbO₃:Fe: Mn 晶体里双光双步全息存储的电子输运过程为

$$\frac{\partial N_{\rm D}^{+}}{\partial t} = (S_{\rm UD}I_{\rm U} + \beta_{\rm D} + S_{\rm DS}I_{\rm U}N_{\rm S}^{+})(N_{\rm D} - N_{\rm D}^{+}) - \gamma_{\rm D}N_{\rm D}^{+}n_{\rm e} - \gamma_{\rm DS}N_{\rm D}^{+}(N_{\rm S} - N_{\rm S}^{+}), \qquad (1)$$

$$\frac{\partial N_{\rm S}^{\scriptscriptstyle +}}{\partial t} = (S_{\rm US}I_{\rm U} + S_{\rm RS}I_{\rm R} + \beta_{\rm S} + \gamma_{\rm DS}N_{\rm D}^{\scriptscriptstyle +})(N_{\rm S} - N_{\rm S}^{\scriptscriptstyle +}) -$$

$$\gamma_{\rm S} N_{\rm S}^+ n_{\rm e} - S_{\rm DS} I_{\rm U} N_{\rm S}^+ (N_{\rm D} - N_{\rm D}^+), \qquad (2)$$
$$\frac{\partial n_{\rm e}}{\partial t} = (S_{\rm UD} I_{\rm U} + \beta_{\rm D}) (N_{\rm D} - N_{\rm D}^+) - \gamma_{\rm D} N_{\rm D}^+ n_{\rm e} +$$

$$(S_{\rm US}I_{\rm U} + S_{\rm RS}I_{\rm R} + \beta_{\rm S})(N_{\rm S} - N_{\rm S}^+) - \gamma_{\rm S}N_{\rm S}^+n_{\rm e} + \frac{1}{e}\nabla \cdot J, \qquad (3)$$

$$J = e\mu n_{e}E + k_{B}T\mu \nabla n_{e} + G_{UD}S_{UD}(N_{D} - N_{D}^{+})I_{U} + G_{RS}S_{RS}(N_{S} - N_{S}^{+})I_{R} + G_{US}S_{US}(N_{S} - N_{S}^{+})I_{U}, \quad (4)$$

$$\nabla \cdot E = \frac{e}{\varepsilon \varepsilon_0} (N_{\rm D}^+ + N_{\rm S}^+ - n_{\rm e} - N_{\rm A})_{\circ} \qquad (5)$$

这里, $N_{\rm D}$, $N_{\rm S}$ 和 $N_{\rm A}$ 分别表示 Mn 和 Fe 的总的数 密度及保持晶体在暗条件下电中性的不动补偿电荷 数密度。 $N_{\rm D}^+$, $N_{\rm S}^+$ 和 n。分别表示 Mn³⁺, Fe³⁺和导 带电子的数密度。Sub 和 Sus 是在抽运光作用下的 吸收截面,与电子从 Mn²⁺ 和 Fe²⁺ 离子中心被激发 到导带有关。S_{RS}是在记录光作用下的吸收截面,与 电子从 Fe²⁺离子中心被激发到导带有关。βs 和 βD 分别是电子从 Fe²⁺ 和 Mn²⁺ 离子中心被激发到导带 的热激发速率。γ_s和γ_D分别是电子从导带到 Fe³⁺ 和 Mn³⁺离子中心的俘获系数。S_{DS} 和 γ_{DS} 描述的是 在抽运光激发下在 Mn²⁺/Mn³⁺ 和 Fe²⁺/Fe³⁺之间 直接进行电子交换的吸收截面和俘获系数。 μ , k_B , T, E, J, ϵ 和 ϵ_0 分别是迁移率、玻尔兹曼常数、绝对 温度、晶体里的电场和电流密度及晶体的相对介电 常数和真空介电常数。G_{RS}和G_{US}分别是Fe²⁺在记 录光和抽运光照射下的玻璃系数, G_{UD} 是 Mn^{2+} 中 心在抽运光照射下的玻璃系数。 $I_{\rm R}$ 和 $I_{\rm U}$ 分别是记录 光和抽运光光强。这里,考虑了扩散、漂移和光伏机 制。需要指出的是,在计算中,分别用 365 nm 和 633 nm 的激光作为抽运光和记录光,选用的参数值 大部分与文献[11]一样,见表1所示。

	表 1	LiNbO ₂ : H	Fe: Mn	实现双	色二光	;全息	存储所注	步及	到的	参数
--	-----	------------------------	--------	-----	-----	-----	------	----	----	----

Table I Parameters in the theoretical analysis of the two-step, two-color holographic recording in LiNbO3:Fe:Mn

Parameters related to Mn in LiNbO ₃ :Fe:Mn											
Parameter	$N_{ m D}~/{ m m}^{-3}$	$N_{ m D}^+$ $/{ m m}^{-3}$	$S_{ m UD}$ /(m ² /J)	$\gamma_{\rm D} /({\rm m}^3/{ m V})$	$G_{\rm UD}$ /(mJ/V)	$N_{ m A}~/{ m m}^{-3}$					
Value	3.8×10 ²⁴	—	3.6×10 ⁻⁵	2.4×10 ⁻¹³	-3.05×10^{-28}	3.4×10 ²⁴					
Ref.	[11]	—	[11]	[11]	[11]	[11]					
Parameters related to Fe in LiNbO3:Fe:Mn											
Parameter	$N_{ m S}~/{ m m}^{-3}$	$N_{ m S}^+~/{ m m}^{-3}$	$S_{ m US}/({ m m^2/J})$	$S_{ m RS}$ /(m ² /J)	$G_{\rm US}$ /(mJ/V)	$G_{\rm RS}$ /(mJ/V)	$\gamma_S \; / \; (m^3/V)$				
Value	2.5 $\times 10^{25}$	_	3.8×10 ⁻⁵	3.3 $\times 10^{-6}$	-3.68×10^{-28}	-2.12×10^{-28}	1.65×10^{-14}				
Ref.	[11]	_	[11]	[11]	[11]	[11]	[11]				
Parameters related to Mn and Fe in LiNbO3:Fe:Mn											
Parameter	$S_{\rm DS}$ /(m ⁵ /J)	γ_{DS} /(m ³ /V)	$\mu/(m^2/Vs)$	ε	т	$q \ /\mathrm{m}^{-1}$	T/K				
Value	3.22 \times 10 ⁻²⁹	1.7×10^{-20}	7.5 $\times 10^{-5}$	28	0.1	2.9 $\times 10^{6}$	293				
Ref.	This paper	This paper	[11]	[11]	—	_	_				

在非挥发双光双步全息存储过程中,一般用一 束均匀的抽运光和一束空间调制度为 m 的正弦调 制记录光辐照晶体,有

$$I_{\rm U}=I_{\rm U0}\,,\qquad\qquad(6)$$

$$I_{\rm R} = I_{\rm R0} \{1 + m \operatorname{Re}[\exp(\mathrm{i}qx)]\}$$
(7)

其中, $q = 2\pi/\Lambda$, Λ 是光栅间距。为了简化, 只考虑 一维情况。对于很小的光调制度($m \ll 1$), 经过线 性化处理后, $N_{\rm D}^+$, $N_{\rm S}^+$, $n_{\rm e}$ 和 E 为

$$N_{\rm D}^{+} = N_{\rm D0}^{+} + {\rm Re}[N_{\rm D1}^{+}\exp(\mathrm{i}qx)],$$
 (8)

$$N_{\rm S}^{+} = N_{\rm S0}^{+} + {\rm Re}[N_{\rm S1}^{+}\exp(iqx)], \qquad (9)$$

$$n_{\rm e} = n_{\rm e0} + \operatorname{Re}[n_{\rm e1} \exp(\mathrm{i}qx)], \qquad (10)$$

$$E = E_0 + \operatorname{Re}[E_1 \exp(iqx)]_{\circ}$$
(11)

对于每个物理量,下角标"0"和"1"分别表示它 的零阶项和 exp(iqx)的一阶项。把(6)~(11)式代 到(1)~(5)式中,得到描述零阶项和一阶项的两套 方程组。在稳态情况下,这两套方程组能够被解,并 且一阶项的量 N_{51}^{+} 和 N_{51}^{+} 能够被直接计算出来。由 于在能达到的连续光强度范围内 n_{e1} 比 N_{51}^{+} 和 N_{51}^{+} 小得多,因此可以忽略导带电子对总空间电荷场的 贡献。

3 LiNbO₃:Fe:Mn 晶体内空间电荷场

为了研究在稳态非挥发双光双步全息存储中, 不同电子输运过程对 LiNbO₃:Fe:Mn 晶体总的空 间电荷场的贡献,除了考虑所有可能的电子跃迁过 程之外,还考虑了两种特殊情况,即 S_{DS} , $\gamma_{DS} = 0$ 和 S_{UD} , $S_{US} = 0$ 。其中 S_{DS} , $\gamma_{DS} = 0$ 对应电子经过导带 在深浅能级之间进行交换的过程(深浅能级之间无 直接的电子交换);而 S_{UD} , $S_{US} = 0$ 对应于抽运光激 发只引起深浅能级之间的直接电子交换过程。后一 种情况下,在 Mn^{2+} 离子中心上的电子被抽运光通过 隧穿效应所导致的深浅能级之间的直接电子交换过 程直接激发到 Fe^{3+} 中心,从而形成 Fe^{2+} 。然后 Fe^{2+} 离子中心上的电子被记录光激发到导带或者直 接被附近的 Mn^{3+} 所俘获。导带上的电子经过漂移、 扩散或者光伏效应被 Mn^{3+} 中心和 Fe^{3+} 中心俘获。 这样,空间电荷场在深能级 Mn^{2+}/Mn^{3+} 和浅能级 Fe^{2+}/Fe^{3+} 上建立起来。

表1的参数被证实能够很好地描述大部分在连 续光和脉冲范围内 LiNbO3:Fe:Mn 的光折变性质。 由于在 LiNbO₃:Fe:Mn 的双光双步全息存储中没 有外加电场,所以 E。设为零。因为热激发参数与光 激发参数在所计算的光强范围内相比较可忽略不 计,因此热激发参数 βs 和 βD 设为零。另外,以前研 究的近化学比 LiNbO3:Fe 晶体的能带系统与本文 的 LiNbO₃:Fe:Mn 晶体是一致的,它的深浅能级分 别由 Fe²⁺/Fe³⁺和 Nb⁴⁺_{Li}/Nb⁵⁺_{Li}构成,在研究 LiNbO₃ :Fe:Mn 晶体中表征隧穿效应的参数值时,发现 LiNbO3:Fe:Mn 晶体中表征抽运光在深能级上的激 发能力的参数 $G_{\rm LD}S_{\rm LD}$ (抽运光激发电子从 ${\rm Mn}^{2+}$ 到 导带的体光伏系数)和浅能级上俘获导带电子能力 参数 γs 的值均比近化学比 LiNbO₃:Fe 晶体中相应 参数的值大一个量级左右[10,11],因此有理由设定 LiNbO₃:Fe:Mn 晶体中参数 S_{DS} 值比近化学比

LiNbO₃:Fe 晶体中相应参数值大一个量级,为 S_{DS} = 3.22×10⁻²⁹ m⁵/J。同样,由于 LiNbO₃:Fe:Mn 晶体中表征深能级上俘获导带电子能力参数 γ_D 与 LiNbO₃:Fe 晶体相同参数值相比大 15 倍^[10,11],因 此这里假定 LiNbO₃:Fe:Mn 晶体中表征深能级上 俘获浅能级电子能力参数 γ_{DS} 的值也相应增大15 倍,为 $\gamma_{DS} = 1.7 \times 10^{-20}$ m³/s。

图 2 描述了当所有可能的电子交换过程都被考虑时,在不同的记录光条件下空间电荷场的强度 $|E_{s1}|, |E_{D1}|和|E_1|的变化。虚线、点线和实线$ 分别表示深、浅能级上的空间电荷场及总的空间电

- 图 2 考虑所有可能的电子交换过程,LiNbO₃:Fe:Mn的 空间电荷场振幅 | E_{s1} |, | E_{D1} |和 | E₁ | 在各种记 录条件下的变化。虚线、点线和实线分别表示深、 浅能级上及总的空间电荷场
- Fig. 2 Amplitudes of the space charge fields $| E_{S1} |$, $| E_{D1} |$ and $| E_1 |$ under various recording conditions for LiNbO₃ : Fe : Mn when all possible electron transfer processes are considered. Dotted, dashed and solid curves represent the results for $| E_{S1} |$, $| E_{D1} |$ and $| E_1 |$, respectively

荷场的大小。图 2(a)表示在 $I_{\rm U} = 1.0 \times 10^4 \text{ W/m}^2$ 时, $|E_{S1}|$, $|E_{D1}|$ 和 $|E_1|$ 随 I_R 的变化。可以看 到 $|E_1|$ 的值几乎等于 $|E_{D1}|$ 的值, $|E_{D1}|$ 明显大 于 $|E_{S1}|$ 。 $|E_{S1}|$, $|E_{D1}|$ 和 $|E_{1}|$ 随 I_R 呈线性增 加。这是因为光激发速率 $S_{RS}I_{R}(N_{S}-N_{S0}^{+})$ 随着 I_{R} 呈线性增强,从而导致了空间电荷场的强度线性增 加。图 2(b) 描述的是 | E_{s_1} | , | E_{D_1} | 和 | E_1 | 在 I_R $= 5.0 \times 10^4 \text{ W/m}^2$ 条件下随着 I_{U} 的变化情况。可 以看到, $|E_{D1}|$ 和 $|E_1|$ 在低抽运光光强下保持不 变并几乎相等,在高抽运光光强条件下开始线性下 降。| E_{s1} | 在低抽运光光强下线性增长,在高抽运光 强下趋于饱和。 $|E_{s1}|$, $|E_{D1}|$ 和 $|E_1|$ 的这些性质 是由抽运光在双光双步全息存储中的两个相反的效 果所造成的:抽运光光强的增加导致了 Fe 离子浓度 的增长,因此 $| E_{s1} |$, $| E_{D1} |$ 和 $| E_1 |$ 随之增加;另 一方面,抽运光又部分地抹除了在 Mn²⁺/Mn³⁺ 能级 和 Fe²⁺ /Fe³⁺ 能级上的光栅。当抽运光光强小于 1.0×10⁶ W/m² 时,这两个相反的效果基本维持着 平衡,因此导致 | E₁ | 基本不变。而当抽运光光强 大于 1.0×10⁶ W/m² 时,抽运光抹除能级上光栅的 程度逐渐超过由它导致的 Fe 离子浓度的增长,造成 $\Gamma = E_1$) 随着抽运光光强的增大而降低。在图 2(c) 中,当 $I_{\rm R}/I_{\rm U}$ 的比值固定为5时, $|E_{\rm S1}|$, $|E_{\rm D1}|$ 和 E_1 | 都是随着 I_R 的增加而线性增强。这些结果说 明,空间电荷场随着记录光的增强而线性增长。此 外,通过这三幅图还可以看到, $|E_1|$ 的大小主要由 深能级 | E_{D1} | 决定。

图 3 为不同电子交换过程在双光双步全息存储 中对空间电荷场的影响。图中分别描述了当 I_{II} = $1.0 \times 10^4 \text{ W/m}^2$ 时 | E_{S1} | , | E_{D1} | 和 | E_1 | 随 I_R 的 变化情况。曲线 1,2 分别是 S_{DS} , $\gamma_{DS} = 0$ 即电子 通过导带进行交换和 S_{UD} , $S_{US} = 0$ 即电子在深浅 能级之间直接进行交换的情况,曲线3是考虑了深 浅能级之间所有可能的电子交换过程。可以看到, $|E_{S1}|$, $|E_{D1}|$ 和 $|E_1|$ 中的曲线 2,3 都是线性增 加,曲线1在低光强下先线性增加,在较高的记录光 强下,其空间电荷场强度明显线性下降。比较曲线 2可以看到,这种情况下的 $|E_{s1}|$ 明显比 $|E_{D1}|$ 和 $|E_1|$ 小得多。实验结果显示,在LiNbO₃:Fe:Mn 里, $|E_{s_1}|$ 与 $|E_{D_1}|$ 和 $|E_1|$ 相比可以忽略不计,并 且光致折射率的变化随着记录光强的增强而线性增 m,光强达到 $10^5 W/m^2$ 以上。这与曲线 2 和 3 描述 的结果相一致,但与曲线1却大不相同。此外,曲线 2 与 3 有着非常近似的数值并且与 I_R有着相似的依

中

- 图 3 在 LiNbO₃:Fe: Mn 晶体里,当 I_U 为 1.0×10⁴ W/m² 时,由不同的电子输运过程所产生的(a) | E_{s1} |, (b) | E_{D1} |和(c) | E_1 | 随 I_R 的变化。曲线1和2分 别表示电子输运过程为 S_{DS} , $\gamma_{DS} = 0$ 和 S_{UD} , $S_{US} = 0$ 时的情况,曲线3表示的是考虑所有电 子输运过程时的情况
- Fig. 3 Dependences of (a) $| E_{S1} |$, (b) $| E_{D1} |$ and (c) $| E_1 |$ on I_R with I_U set to be $1.0 \times 10^4 \text{ W/m}^2$ for different electron transfer processes in a LiNbO₃: Fe: Mn crystal. Here curves 1 and 2 correspond to the special cases with S_{DS} , $\gamma_{DS} = 0$ and S_{UD} , $S_{US} = 0$, respectively, while curves 3 represent the results when all possible electron transfer

processes are considered

赖性。由此可见,在深浅能级之间的直接电子交换 过程所导致的隧穿效应在 LiNbO₃:Fe:Mn 中的双 光双步全息存储里起到了决定性的作用,与之相关 的参数在双光双步全息存储性能方面也起着关键的 作用。需要说明的是,在低光强下曲线1有着明显 高于曲线2和3的空间电荷场,这是由于曲线1所 代表的电子通过导带进行交换过程中,电子基本全 部参与空间电荷场的建立。而在由隧穿效应引起的 直接电子交换过程中,部分浅能级上电子直接被深 能级所俘获,它们并没有参与到空间电荷场的建立 过程中。在低记录光强下,曲线1描述的光折变材 料所对应的能级构造和电子输运过程能够给出最好 的非挥发全息存储性能。由于在所研究的LiNbO₃: Fe:Mn晶体里,隧穿效应是不容忽视的,因此曲线1 所代表的输运过程仅是一种理想化的过程,但它对 选择光存储材料有指导意义。

4 结 论

光

理论研究了稳态情况下 LiNbO₃:Fe:Mn 晶体 的非挥发全息存储性能。通过比较 Mn²⁺/Mn³⁺ 和 Fe²⁺/Fe³⁺能级之间不同的电子交换过程对空间电 荷场所造成的不同影响,推断出深、浅能级之间通过 隧穿效应所引起的直接电子交换过程在双光双步全 息存储过程中起着决定性的作用。因此,与隧穿效 应相关的材料参数对双光双步全息存储的表现起着 至关重要的作用。LiNbO₃:Fe:Mn 的光致空间电荷 场至少可达到10⁵ V/m 的数量级。

参考文献

- Y. S. Bai, R. Kachru. Nonvolatile holographic storage with two-step recording in lithium niobate using cw lasers[J]. *Phys. Rev. Lett.*, 1997, **78** (15): 2944~2947
- 2 Hang Jun, Han Shengyuan, Lu Guiwu *et al.*. Calculation for electronic structure and optical properties of LiNbO₃ crystals [J]. *Chinese J. Lasers*, 2007, **34** (9): 1227~1231 张 军,韩胜元,卢贵武等. 铌酸锂晶体电子结构和光学性质 计算[J]. 中国激光, 2007, **34** (9): 1227~1231
- 3 L. Hesselink, S. S. Orlov, A. Liu *et al*.. Photorefractive materials for nonvolatile volume holographic data storage [J]. *Science*, 1998, 282: 1089~1094
- 4 H. Guenther, R. Macfarlane, Y. Furukawa *et al.*. Two-color holography in reduced near-stoichiometric lithium niobate[J]. *Appl. Opt.*, 1998, **37**(32): 7611~7623
- 5 Zhang Guoquan, Y. Tomita, W. Xu *et al.*. Nonvolatile twocolor holography in indium-doped lithium niobate [J]. *Appl. Phys. Lett.*, 2000, 77(22): 3508~3510
- 6 Wang Jian, Sun Junqiang, Sun Qizhen. Tunable wavelength converters of picosecond pulses based on periodically poled LiNbO₃ waveguides[J]. Acta Optica Sinica, 2006,26(10):1453 ~1458

王 健,孙军强,孙琪真.周期域反转铌酸锂可调谐波长转换器的皮秒脉冲实验[J].光学学报,2006,**26**(10):1453~1458

- 7 D. vonder Linde, A. M. Glass ,K. F. Rodgers. Multiphoton photorefractive processes for optical storage in LiNbO₃ [J]. *Appl. Phys. Lett.*, 1974, **25**(3): 155~157
- 8 D. Berben, K. Buse, S. Wevering *et al.*. Lifetime of small polarons in iron-doped lithium niobate crystals[J]. J. Appl. Phys., 2000, 87(3): 1034~1041
- 9 F. Jermann, J. Otten. Light-induced charge transport in LiNbO₃:Fe at high light intensities[J]. J. Opt. Soc. Am. B, 1993, 10(11): 2085~2092

- 10 A. Adibi, K. Buse, D Psaltis. Theoretical analysis of two-step holographic recording with high-intensity pulses [J]. *Phys. Rev. A*, 2001, 63: 023813
- 11 A. Adibi, K. Buse, D Psaltis. Two-center holographic recording[J]. Appl. Opt., 2001, 18(5):584~601
- 12 ShenYan, Zhang Guoquan, Fu Bo et al. Studies on nonvolatile holographic recording for LiNbO₃: Fe with different stoichiometry[J]. Journal of Infrared and Millimeter Waves, 2005,24(4):269~272

申 岩,张国权,付 博等.对不同组份LiNbO₃:Fe 非挥发全息存储的研究[J].红外与毫米波学报,2005,**24**(4):269~272

13 Shen Yan, Zhang Guoquan, Fu Bo*et al*.. Nonvolatile two step, two-color holography with continuous- wave lights for both congruent and near-stoichiometric LiNbO₃: Fe[J]. J. Appl. Phys., 2004, 96(10): 5405~ 5414

- 14 Shen Yan, Zhang Guoquan, Fu Bo. Theoretical studies on nonvolatile two-step, two-color holographic recording sensitivity for LiNbO₃:Fe[J]. Opt. Commun., 2005, 256(1-3): 24~34
- 15 Yao Jianghong, Xue Liangping, Yan Boxia et al. Optical parametric oscillator based on periodically poled MgO: LiNbO3 crystal [J]. Chinese J. Lasers, 2007, 34(2): 209~213 姚江宏,薛亮平,颜博霞等. 周期极化掺镁铌酸锂晶体的光学 参量振荡[J]. 中国激光, 2007, 34(2): 209~213
- 16 Luo Chuanhong, Sun Junqiang, Wang Jian *et al.*. Waveform distortion in periodically poled lithium niobate-based wavelength converter with pulse pumping [J]. *Acta Optica Sinica*, 2007, 27(6): 1084~1089
 罗传红,孙军强,王 健等.周期极化铌酸锂波长转换器脉冲抽运时的波形畸变[J]. 光学学报, 2007, 27(6): 1084~1089